

act series

Medium Voltage Distribution C SENAL MARKA

Catalog 2022

SF₆ Circuit breaker up to 40.5 kV

se.com

Same technology, same offer, simpler names

We're making it easier for you to navigate across the wide range of our world-class digital products and select the offers that are right for you and your needs with confidence.

EcoStruxure Architecture

To enable brand consistency, relevance and impact, we are reinforcing our EcoStruxureTM architecture and digital customer lifecycle tools to help ensure a seamless experience from the CAPEX to OPEX phases of each project, bridging our entire ecosystem of partners, services providers and end users.

EcoStruxure is our IoT-enabled open and interoperable system architecture and platform. EcoStruxure delivers enhanced values around safety, reliability, efficiency, sustainability and connectivity for our customers. EcoStruxure leverages advancements in IoT, mobility, sensing, cloud, analytics, and cybersecurity technologies to deliver Innovation At Every Level from Connected Products, Edge Control, Apps, and Analytics & Services: our IoT technology Levels.

Old names	New names
Ecodial	EcoStruxure Power Design
Ecoreal	EcoStruxure Power Build
Ecoreach	EcoStruxure Power Commission
MasterPact MTZ mobile App/Easergy mobile App	EcoStruxure Power Device App

Pact and Set Series

Featuring outstanding medium-voltage (MV) and low-voltage (LV) switchboards, motor control centers and power distribution solutions for high-performance power applications, Schneider Electric's Pact and Set Series are best-in-class solutions based on high levels of safety and an optimized footprint. Built on a modular architecture and incorporating smart connected devices for maximum safety, reliability, performance and energy efficiency, the Set Series is delivered to customers directly from our Schneider Electric plants or via a global network of licensed partner panel builders, who are trained and audited to provide quality equipment and support.

Old names	New names
HVX	Evo Pact HVX
LF	Evo Pact LF
SF	EvoPact SF
Premset	Prem Set
Compact	ComPact
Masterpact	Master Pact
Transferpact	Transfer Pact
Fupact	Fu Pact

Your needs

EvoPact SF answers

- Low level of SF₆ pressure
- A safety membrane which, in very rare cases of an internal arc, will open in order to let the gas flow to the back of the circuit breaker
- Keeping at 0 bar of SF₆:
 - The nominal performance
 - The capacity to break once at least 80 % of the full breaking capacity
 - The capacity to withstand at least 80 % of the insulating level
- Breaking all types of current without overvoltages

Proven technology

- Long experience of Schneider Electric in manufacturing MV circuit breakers in SF₆ technology
- 800,000 EvoPact SF Circuit Breakers installed with over 25 years of experience

Ease of installation

- Comprehensive range with a large choice of versions
- Cradle versions: retrofit and new panels integration

The advantages of a proven technology

A new path for achieving your electrical installations

General Presentation	6
EvoPact SF1 and SFset Circuit breakers fixed version	16
EvoPact SF2 Circuit breakers fixed version	32
EvoPact SF F400 Circuit breakers withdrawable version	42
Services	56
Order form	66

General Presentation

The advantages of a proven technology				
Breaking principle	9			
Scope of application and some references	10			
Operating conditions & Standards	12			
EvoPact SF circuit breakers range	13			
EvoPact SF circuit breakers panorama	14			

up to 40.5 kV

General Presentation

EvoPact SF SF₆ Circuit breaker The advantages of a proven technology

Schneider Electric has developed a wide range of high performance and reliable devices operating faultlessly on all 5 continents.

Continuously increasing its performance, the company maintains a very high level of innovation in its offer.

Safety

The breaking medium is sulfur hexafluoride (SF₆) used at low pressure. The insulating enclosure containing the circuit breaker pole(s) is equipped with a safety membrane.

In addition, the rated characteristics, breaking the rated current under the rated voltage, are generally maintained at zero relative bars of SF.

Reliability

The motor-charged spring stored energy operating mechanism is a key factor of device reliability: Schneider Electric cumulates 45 years' experience with this type of mechanism, 1,200,000 of which are already in operation. Schneider Electric's mastery of design and the testing of sealed systems guarantees sustained device performance for at least 30 years.

Key Benefits

- Compact and simple design
- No overvoltage during breaking
- Field proven experience

Certification

The quality system for the design and production of EvoPact SF range is certified in conformity with ISO 9001: 2008 quality assurance standard requirements.

The environmental management system adopted by Schneider Electric production sites for the production of EvoPact SF range has been assessed and judged to be in conformity with requirements in standard ISO 14001.

Increased endurance

The mechanical and electrical endurance of Schneider Electric SF, breaking devices are in conformity with the most demanding specifications recommended by the IEC.

These devices therefore meet requirements for even the most exposed of networks

Environmentally-friendly

Schneider Electric devices have been designed to ensure protection of the environment:

- the materials used, both insulating and conductive, are identified and easy to separate and recycle,
- the SF₆ gas is under control from production through to the circuitbreaker's end of life. In particular it can be recovered at the end of the circuit-breaker's life and re-used after treatment in line with the new European directive,
- an end of life manual for the product details procedures for dismantling and recycling components.

Quality Assurance

During production, each circuit breaker undergoes systematic routine tests in order to check quality and conformity:

- pole sealing check
- checking the correct mechanical operation of the device, plus its associated locking mechanisms
- checking simultaneous closing of contacts
- checking power frequency insulation level
- checking main circuit resistance
- checking auxiliary circuit insulation
- checking switching speeds •
- checking the switching cycle
- · measuring the switching times.

The results are recorded on the test certificate for each device which is initiated by the quality control department.

EvoPact SF SF₆ Circuit breaker **Breaking principle** up to 40.5 kV **General Presentation**

DE51238 DE57439 b d DE57440 DE51241

Breaking principle: puffer type

EvoPact SF circuit breakers use the puffer principle with SF6 gas.

This methods cools and extinguishes the electrical arc as it passes through zero current by puffing a gas compressed by a piston attached to the moving contact. The gas is channeled by an insulating nozzle towards the tubular arcing contacts that are used as an exhaust.

This breaking technique is used for high-performance breaking applications (40.5 kV-31.5 kA) and has been used for the past 45 years.

The operating sequence in a puffer-type breaking chamber with the moving part actuated by a control mechanism is as follows:

The circuit breaker is closed

2

Following an opening order the main contacts separate (a) and the current is directed into the breaking circuit (b).

When the main contacts start to open the piston (c) slightly compresses the SF gas in the compression chamber (d)

An electrical arc appears on separation of the arcing contacts. The piston (c) continues its travel downwards.

A small quantity of the gas channeled by the insulating nozzle (e) is injected towards the arc.

For low current breaking, the arc is cooled by forced ventilation.

However, for high currents the thermal expansion moves the hot gases towards cooler parts in the breaking unit.

The distance between arcing contacts becomes sufficient to allow breaking of the current when it passes through zero due to the dielectric properties of the SF₆ gas

4

The moving parts finish their movement and injection of cold gas continues until the contacts are fully open

The circuit breaker is open

$\rm EvoPact\,SF\,SF_{6}$ Circuit breaker up to 40.5 kV

General Presentation

Scope of application and some references

Our EvoPact SF Circuit Breaker adapts to all electrical power distribution requirements up to 40,5 kV.

Applications

EvoPact SF circuit breakers are 3-pole MV circuit breakers for indoor installation. They are mainly used for switching and protection of networks up to 40.5 kV in primary and secondary power distribution.

The autocompression breaking technique used in these circuit breakers means that making or breaking all types of capacitive or inductive currents can be achieved without dangerous overvoltages for the switchgear connected to the network.

The EvoPact SF circuit breaker is therefore well suited to operating capacitor banks.

 $\rm SF_6$ Circuit Breaker is an essential component of an indoor metal-enclosed device intended for the MV section of HV/MV substations and high power MV/MV substations.

- SF₆ Circuit Breaker offers you:
 - pre-engineered and adaptable solutions tailored to your specific requirements
 - significantly reduced maintenance
 - local support centres throughout the world
- · EvoPact SF Circuit Breaker gives you the advantages of:
 - continuity of service for your networks;
 - enhanced safety for your staff and operations
 - optimised investment throughout the life of your installation
 - the possibility of integrating your medium voltage switchboard in a monitoring and control system

EvoPact SF Circuit breaker is present in all power distribution markets

Energy

- Electric power stations (thermal)
- Auxiliary substations
- Source substations

Industry

- Oil & gas
- Chemical industry
- Paper mills
- Metallurgy
- Car industry
- Mining
- Cement plants...

Infrastructure

- Airports
- Ports
- Hospitals
- Water treatment...

EvoPact SF SF₆ Circuit breaker up to 40.5 kV Scope of application and some references

General Presentation

Power generation

Sonelgas SEC	Algeria KSA
Costa Nera SA power station	Argentina
Union Electrica	Cuba
Canal Electrical Distribution Company	Egypt
CEA Cadarache	France
EDF	France
Wind Turbines	France
Sarlux power station	Italy
Ivory Electricity Company	Ivory Coast
PowerCo	New Zealand
NIPP JEPCO	Nigeria Jordan
Skagerak Nett AS	Norway
OETC	Oman
Wind farm	Turkey
Renovation of the Tchernobyl nuclear power station	Ukraine
EVN thermal power station	Vietnam

Industry

Water treatment, Degremont	Argentina
Agri-food, Mastellone	Argentina
Alcoa Aluminium	Australia
General Motors Holden	Australia
Rio Tinto (Mining)	Australia
Automotive, Volvo	Belgium
Water treatment, (SIAAP),	France
Cement production, Lafarge	France
Automotive, Ford	Germany
Bridgestone	Hungary
Pharmaceutical, Merck	Singapore
BD Medical	Singapore
General Motors	Thailand

Oil and Gas

Oil, Girassol Mpg-Elf	Angola
Oil, Repsol, Santander	Spain
Oil, Sincor (Total)	Venezuela
Raffinerie PetroVietnam	Vietnam
Petro Amazona	Ecuador
Sonatrach QuatarPetroleum	Algeria Qatar
Exxon Mobil	Netherland
OMSK refinery NURLAT refinery	Russia
TADCO, BABOIL developmen	United Arab Emirates

Infrastructure

	New Islands Project	Abu Dhabi
	Hamilton Hotels	Australia
	Zaventem Airport	Belgium
	Hospital Oswaldo Cruz, São Paulo	Brazil
	Karoua Airport	Cameroon
	Sanya Airport	China
	Bank of China, Beijing, Jv Yanta	China
	Santafe de Bogota Airport	Colombia
	Libreville Airport	Gabon
	Plaza Hotel, Jakarta	Indonesia
	Bali Airport	Indonesia
	Grand Indonesia Project	Indonesia
	Milan Metro	Italy
	Ivarto Hospital, CORIF	Madagascar
	Slim River Hospital	Malaysia
	Lamentin Airport, CCIM	Martinique
	Metro of Mexico	Mexico
	Central Bank of Abuja, ADEFEM	Nigeria
	Alicante Airport	Spain
	Girona Airport	Spain
	Port of Laem Chabang	Thailand
	Industrial Zone	Turkey
	Danang and Quinhon Airport	Vanad, Vietnam
1		\sim

up to 40.5 kV **General Presentation**

EvoPact SF SF₆ Circuit breaker **Operating conditions & Standards**

Operating conditions

Normal operating conditions, according to the IEC International Standards listed below, for indoor switchgear.

- Ambient air temperature:
 - less than or equal to 40°C
 - less than or equal to 35°C on average over 24 hours
 - greater than or equal to 25 °C
- Altitude:
 - less than or equal to 1000 m;
 - above 1000 m, a derating coefficient is applied (please consult us)
- · Atmosphere: no dust, smoke or corrosive or flammable gas and vapor, or salt
- Humidity:
 - average relative humidity over a 24 hour period $\leq 95\%$
 - average relative humidity over a 1 month period $\leq 90\%$
 - average vapor pressure over a 24 hour period ≤ 2.2 kPa
 - average vapor pressure over a 1 month period ≤ 1.8 kPa

Storage conditions

In order to retain all of the functional unit's qualities when stored for prolonged periods, we recommend that the equipment is stored in its original packaging, in dry conditions, and sheltered from the sun and rain at a temperature ranging from - 40°C up to + 70°C.

Standards

The EvoPact SF range meets the following international standards:

- IEC 62271-100: High-voltage switchgear and controlgear - Alternating current circuitbreakers
- IEC 62271-1: High-voltage switchgear and controlgear: common specifications

General Presentation

EvoPact SF SF₆ Circuit breaker up to 40.5 kV EvoPact SFcircuit breakers range

One range of comprehensive and proven three-pole circuit breaker units for indoor installation using SF_e technology.

Both compact and dependable, it is ideally suited to the most demanding applications.

EvoPact SF1 and SFset circuit breakers fixed versions

PM110000

PM109998

EvoPact SF2 circuit breakers fixed version

EvoPact SF F400 circuit breakers withdrawable version

EvoPact SF SF₆ Circuit breaker up to 40.5 kV General Presentation

EvoPact SF circuit breakers panorama

Circuit breakers

EvoPact SF range circuit breakers -FIXED version

EvoPact SF1 fixed	EvoPact SFset fixed	EvoPact SF2 fixed				
Side or front operating mechanism	Side or front operating mechanism with integrated VIP	Front operating mechanism				
Rated voltage Ur (kV, 50/60 Hz)						
24	17.5	24				
Rated short-circuit breaking current (lsc)						
25 kA from 12.5 to 25 kA	25 kA from 12.5 to 25 kA	from 12.5 from 25 to 40 kA to 40 kA 31.5 kA				
Rated current (Ir)						
630 A from 400 to 1250 A	630 A 630 A	from 630 to 3150 A 2500 A				

EvoPact SF SF₆ Circuit breaker EvoPact SF up to 40.5 kV **General Presentation**

circuit breakers panorama

(cont.)

Circuit breakers

Protection, monitoring and control

EvoPact SF range circuit breakers -WITHDRAWABLE version

EvoPact SFset

circuit breakers

circuit breakers

EvoPact SF1/SF2/SF F400

EvoPact SF F400 withdrawable

Front operating mechanism

VIP400/410

- MV distribution substation incomer, feeder and bus riser protection relay
- MV/LV transformer protection

PowerLogic P1

Simple, reliable and effective protection relays

PowerLogic Easergy P3

The perfect fit for standard MV applications

PowerLogic P5

Enhanced safety and security for demanding MV applications EvoPact SF1 and EvoPact SFset circuit breakers fixed version

Presentation	18
General characteristics	19
Description of functions	21
RI stored energy operating mechanism Wiring diagram	21
Opening circuit	22
Remote control	23
Indication and locking/interlocking	24
Protection, monitoring and control	25
VIP400/410 protection relays	25
Trip curves for VIP400 and VIP410	27
Current sensors and test unit for VIP400/410	28
Dimensions	29

EvoPact SF SF₆ Circuit breaker **Presentation** up to 40.5 kV SF1 and SEset Fixed version

EvoPact SF1 circuit breakers with a B1 side operating mechanism

EvoPact SFset circuit breakers with a B1 side operating mechanism

Description of the device

The basic withdrawable version of the EvoPact SF circuit breaker comprises:

- 3 main independent poles, that are mechanically linked and each comprising
- a "sealed pressure system" type insulating enclosure. The sealed enclosure is filled with low pressure SF₆ gas
- a stored energy operating mechanism of manual RI type (that can be electrically operated as an option) This gives the device an opening and closing speed that is independent of the operator, for both electrical and manual orders. When equipped with an electrical operating mechanism, the circuit breaker
- can be remotely controlled and it is possible to carry out reclosing cycles. a front panel housing the manual operating mechanism and status
- indicators
- upstream and downstream terminals for the power circuit connection
- a terminal block for connection of external auxiliary circuits.

According to its characteristics, the EvoPact SF circuit breaker is available either in frontal version or in lateral version.

Each device can be optionally equipped with:

- an electrical operating mechanism
- a support frame fitted with rollers and floor securing brackets for a fixed installation
- locking of the circuit breaker in the open position by a keylock installed on the control panel
- a pressure switch for the high performance versions
- a Harting 42-pin type LV connector.

The EvoPact SFset includes an independent protection chain

The EvoPact SFset is provided with a fully autonomous integrated protection chain (with a VIP type control unit) operating without an auxiliary power source. The VIP protection unit exists in two models: VIP400 and VIP410.

Depending on the model, the unit provides protection against phase overcurrents and earthing faults.

VIP protection units are associated with functional current sensors.

Two interchangeable sensors, CSa4 and CSb4, are sufficient to cover all requirements from 0 to 630 A.

EvoPact SFset is delivered equipped and cabled with its protection chain, this simplifies panel builders' installation work.

EvoPact SFset schematic diagram

-M110000

EvoPact SF SF₆ Circuit breaker **General characteristics** up to 40.5 kV SF1 and SFset Fixed version

EvoPact SF1

PM110000

Electrical character	ristic	s according to I	EC 62	271-1	100										
Rated voltage	Ur	kV 50/60 Hz		12	17.5			24				36			
Insulation voltage															
- power frequency withstand	Ud	kV 50 Hz 1min		28		38		50				70			
 lightning impulse withstand 	Up	kV peak		75		95			12	25			1	70	
Rated current	lr	A	400	-	-		-			-	-		-	-	-
			630												
			1250	-											
Short circuit current	lsc	kA		25	12.5	20	25	12.5	16	20	25	12.5	16	20	25
Short time withstand current	lk/tk	kA/3 s		25	12.5	20	25	12.5	16	20	25	12.5	16	20	25
Short-circuit making current Ip	lp	kA peak	50 Hz	62.5	31.3	50	62.5	31.3	40	50	62.5	31.3	40	50	62.5
			60 Hz	65	32.5	52	65	32.5	41.6	52	65	32.5	41.6	52	65
Rated switching sequence		O-3 min-CO-3 min-CO													
		0-0.3 s-CO-3 min-CO													
		0-0.3 s-CO-15 s-CO													
Phase to phase		mm	220	-				-	-	-	-	-	-	_	-
			250									-	-	_	-
			280	-	-	-	-					-	-	_	-
			350	-	-	-	-	-	-	-	-		-		
			380		_	-	-	_	-	-	-				
Operating mechanism		A1 lateral (*)		-									-		
		B1 lateral (*)		-									-		
		C1 frontal (*)		-									-		
		For SM6 switchgear			-		-				-				
Operating times		Opening (ms)							<	60					
		Breaking (ms)							<	75					
		Closing (ms)							< 1	00					
Service temperature	Т	°C							- 5 to +	40 (**)					
Mechanical endurance		Class							Ν	12					
		Number of switching operations							10,	000					
Electrical endurance		Class							E	2					
Capacitive current breaking capacity		Class							C	2					

(*) See chapter "Dimensions" (**) For a temperature lower than -5 °C, please consult us

Available – Not available

Specific applications

Switching and protection of capacitor banks

EvoPact SF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC 62271-100.

Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA. EvoPact SF SF₆ Circuit breaker **General characteristics** up to 40.5 kV SF1 and SFset Fixed version

(cont.)

EvoPact SFset

PE56504

Electrical characteristics according to IEC 62271-100

		•											
Rated voltage	Ur	kV 50/60 Hz		12		17.5		24					
Insulation voltage													
- power frequency withstand	Ud	kV 50 Hz 1min		28	38			50					
- lightning impulse withstand	Up	kV peak		75		95		125					
Rated current	lr	A	400	-	-		-		•	-	-		
			630					•					
			1250	-	-	-	-	-	-	-	-		
Short circuit current	lsc	kA		25	12.5	20	25	12.5	16	20	25		
Short time withstand current	lk/tk	kA/3 s		25	12.5	20	25	12.5	16	20	25		
Short-circuit making current	lp	kA peak	50 Hz	62.5	31.3	50	62.5	31.3	40	50	62.5		
			60 Hz	65	32.5	52	65	32.5	41.6	52	65		
Rated switching sequence		O-3 min-CO-3 min-CC)						I				
		0-0.3 s-CO-3 min-CO							r				
		0-0.3 s-CO-15 s-CO							r				
Phase to phase		mm	220	-				-	-	-	-		
			250										
			280	-	-	-	-						
			350	-	-	-	-	-	-	-	-		
			380	-	-	-	-	-	-	-	-		
Operating mechanism		A1 lateral (*)		-									
		B1 lateral (*)		-									
		C1 frontal (*)		-									
		For SM6 switchgear			-		-				-		
Operating times		Opening (ms)		< 60									
		Breaking (ms)		<75									
		Closing (ms)					< 1	100					
Service temperature	Т	°C					- 5 to +	+ 40 (**)					
Mechanical endurance		Class					Ν	/12					
		Number of switching operations		10,000									
Electrical endurance		Class					E	2					
Capacitive current breaking capacity		Class					C	22					
											Available		

(*) See chapter "Dimensions" (**) For a temperature lower than -5 °C, please consult us

– Not available

Specific applications

Switching and protection of capacitor banks

EvoPact SF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC 62271-100.

Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA. EvoPact SF SF₆ Circuit breaker up to 40.5 kV

Description of functions

SF1 and SFset Fixed version

RI stored energy operating mechanism Wiring diagram

Manual or electrical operation of the RI stored energy operating mechanism

This gives the device an opening and closing speed that is independent of the operator whether the order is electrical or manual. The electrical control mechanism carries out reclosing cycles and is

automatically recharged by a geared motor each time after closing.

It consists of:

- · the stored energy operating mechanism which stores in springs the energy required to open and close the device
- a manual lever-operated spring arming device •
- a geared electrical arming device which automatically re-arms the control mechanism as soon as the circuit breaker is closed (optional)
- manual order devices by push buttons on the front panel of the device
- an electrical remote closing device containing a release with an antipumping relay
- an electrical opening order device comprising one or several release units which can be of the following type:
 - shunt opening
 - undervoltage
- Mitop, a low consumption release, used only with the self protection relay. an operation counter
- •
- an "open/closed" position indicator device with a mechanical indicator
- a device for indicating "charged" operating mechanism status by mechanical indicator and electrical contact (optional)
- a module of 14 auxiliary contacts whose availability varies according to the diagram used.

Wiring diagram (principle)

up to 40.5 kV

SF1 and SFset Fixed version

EvoPact SF SF₆ Circuit breaker **Description of functions**

Opening circuit

Operating mechanism

Shunt opening release (1)

Undervoltage release (2)

Low energy release (3)

Composition

The opening circuit can be produced using the following components:

- shunt opening release (on energizing) (YO1)
- second shunt opening release (on energizing) (YO2)
- undervoltage release (YM)
- · low energy release (Mitop).

Note: see the table of the releases' combinations "Order form" page.

Shunt opening release (YO1 and YO2)

Energizing this unit causes instant opening of the circuit breaker.

Characteristics			
Power supply	See "Orde	r form" page	
Threshold	V AC	0.85 to 1.1 Ur	
	V DC	0.7 to 1.1 Ur	
Consumption	V AC	160 VA	
	V DC	50 W	

As an option, the tripping circuit monitoring (supervision) enables to ensure that the Circuit breaker is ready to open.

Undervoltage release (YM)

This release unit causes the systematic opening of the circuit breaker when its supply voltage drops below a value less than 35% of the rated voltage, even if this drop is slow and gradual. It can open the circuit breaker between 35% and 70% of its rated voltage. If the release unit is not supplied power, manual or electrical closing of the circuit breaker is impossible. Closing of the circuit breaker is compulsory when the supply voltage of the release unit reaches 85% of its rated voltage.

Characteristics			
Power supply		See "Order for	m" page
Threshold		Opening	0.35 to 0.7 Ur
		Closing	0.85 Ur
Consumption	Triggering	V AC	400 VA
		V DC	100 W
	Latched	V AC	100 VA
		V DC	10 W

Low energy release (Mitop)

This specific release unit comprises a low consumption unit and is specifically used with self-powered relays.

Oh ana stanistia

onaraoteristios		
Power supply	Direct current	
Threshold	0.6 A < I < 3 A	

Any tripping due to the Mitop release unit is momentarily indicated by an SDE type changeover contact.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF1 and SFset Fixed version

Description of functions

Remote control

Operating mechanism

Electrical motor with gearing (4)

Shunt closing release (5)

Operation counter (6)

Function

Remote control enables the remote opening and closing of the circuit breaker.

Composition

The remote control mechanism comprises:

- · an electrical motor with gearing
- a shunt closing release combined with an anti-pumping device
- an operation counter. •

Electrical motor with gearing (M)

The electrical motor arms and re-arms the stored energy unit as soon as the circuit breaker is closed. This allows the instant closing of the device after opening

The arming lever is only used as a back-up operating mechanism in the case of any auxiliary power supply.

The M3 contact indicates the end of arming operations.

		A	
(n	arar	TOP	STIC
	a 1 a c		3110

onaraotoriotioo			
Power supply	See "Order fo	orm" page	
Threshold	V AC/V DC	0.85 to 1.1 Ur	
Consumption	V AC	380 VA	
	V DC	380 W	

Shunt closing release (YF)

This allows the remote closing of the circuit breaker when the operating mechanism is armed.

2	ha	ra	ct	е	ri	S	ti	cs		

(P T

Power supply	See "Orde	See "Order form" page		
Threshold	V AC	0.85 to 1.1 Ur		
	V DC	0.85 to 1.1 Ur		
Consumption	V AC	160 VA		
	V DC	50 W		

The anti-pumping relay enables the guaranteeing of opening priority in the case of a permanent closing order. This therefore avoids the device being caught in a uncontrolled opening-closing loop.

Operation counter

The operation counter is visible on the front panel. It displays the number of switching cycles (CO) that the device has carried out.

up to 40.5 kV

SF1 and SFset Fixed version

EvoPact SF SF₆ Circuit breaker **Description of functions**

Indication and locking/interlocking

Operating mechanism

Auxiliary contacts (7)

Keylocking kit (8)

"Open/closed" auxiliary contacts

The number of contacts available depends on the options chosen on the operating mechanism.

In the basic configuration, the circuit breaker's operating mechanism comprises a total of:

- 6 normally closed contacts (NC)
- 7 normally open contacts (NO)
- 1 changeover contact (CHG).

The usage procedure for auxiliary contacts is given in the following table:

0	pti	on	S

options			
	NC contact	NO contact	
Remote control	1	1	
Shunt opening release (each one) YO1/YO2	0	1	_
Undervoltage release YM	0	0	_
Low energy release (Mitop)	0	0	

In order to know the final number of available contacts, you must deduct the total number of contacts included in the circuit breaker (6 NC + 7 NO + 1 CHG), the number of contacts used given in the table above.

E.g.: a circuit breaker equipped with a remote control and a shunt trip unit has the following available contacts:

6 NC + 5 NO + 1 CHG.

With a undervoltage release instead of the shunt trip, this circuit breaker would have the following available contacts:

6 NC + 6 NO + 1 CHG.

Shunt	openina	release	combin	nation
onanc	oponing	1010400	00	i a ci o i i

1st release 2nd release	Shunt opening release YO1	Undervoltage release YM	Mitop
Without	6NC+5NO+1CHG	6NC+6NO+1CHG	6NC+6NO+1CHG
Shunt opening release YO2	6NC+4NO+1CHG		
Undervoltage release YM	6NC+5NO+1CHG		
Mitop	6NC+5NO+1CHG	6NC+6NO+1CHG	

Locking the circuit breaker in the "open" position

This key-operated device allows the circuit breaker to be locked in the "open" position.

The circuit breaker is locked in the open position by blocking the opening push button in the "engaged" position.

Locking is achieved using a flat or tubular captive key type keylock.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF1 and SFset Fixed version

Protection, monitoring and control

VIP400 & VIP410 protection relays

EvoPact SFset with a VIP protection unit installed on the front panel

The EvoPact SFset circuit breaker has an integrated and independent protection system

The EvoPact SFset circuit breaker comprises an EvoPact SF1 into which is integrated a protection system comprising:

- a set of current sensors installed on the lower current terminals of the pole units.
- two interchangeable sensors, CSa4 and CSb4, sufficient to cover all requirements from 0 A to 630 A
- a VIP type protection relay mounted on the control unit.
- a "Mitop" low consumption, release unit installed on the switching device.
- The unit is fully independent and functions without an auxiliary power supply.

Operating principle

The protection system is supplied power by sensors which supply:

- the "current" information, processed by the protection unit
- the electrical power required for the whole protection system to operate ; VIP unit and Mitop release.

All settings are visible and accessible from the front of the device.

Introduction

VIP400 and VIP410 protection relays are designed for the protection and operation of MV/LV utility substations and electrical distribution networks in industrial installations.

They are suitable for typical protection applications that require current metering, phase overcurrent and earth fault protection, and thermal overload protection.

The VIP400 is a relay with a self-powered supply. It is powered by its current sensors and operates without an auxiliary power supply.

The VIP410 is a relay with a dual power supply. It is powered both by its current sensors, just like the VIP400, and also by an auxiliary power supply. The protection functions work autonomously, like those on the VIP400.

With the VIP410, the auxiliary power supply is needed for the communication, the output relays and the very sensitive earth fault protection to work. The VIP410 protection functions work even if the auxiliary power supply fails.

Applications

- · MV distribution substation incomer, feeder and bus riser protection relay
- MV/LV transformer protection

VIP 410: ready for Smart grids

VIP 410 includes a dual supply for communication with

- Remote communication with DMS and RTUs
- Remote alarming
- · Time stamped events recorded
- · Measurement of current, load history, over-current and breaking profile

VIP 410 is dedicated for intelligent MV loops with automation:

Remote configuration

- Setting groups selectable according to the configuration of the MV loop
- Remote asset management
- Plug and play system with Easergy RTUs (R200) to integrate all the protocols (IEC60870-104, DNP3, IEC61850), and remote WEB pages.

- VIP 400 is a self-powered relay energised by the CTs; it does not require an auxiliary power supply to operate
- VIP410 is a dual powered relay offering self-powered functions and additional functions powered by an AC or DC auxiliary supply.

up to 40.5 kV

SF1 and SFset Fixed version

EvoPact SF SF₆ Circuit breaker **Protection, monitoring and** control

VIP400 & VIP410 protection relays

Easy to use

Front panel keypad and display

- · used to set the protections and the operating parameters.
- · displays the network currents and the fault messages.
- · the settings are protected by a password and by а

sealable cover.

- the setting does not require a PC.
- the LCD is backlit if the VIP410 auxiliary power is present.
- 4 fault indicators: OC, EF, thermal, external
- · 3 status led: watch dog, aux power supply, communication

Time tagged events records

Each time VIP400, 410 trips the CB, it records the origin of the event, the tripping currents, the date and the time. These data can be read on the front panel or by communication. It provides the operator with an help to analyze a fault on the network.

Tests of protection system and circuit breaker

Dual core CTs : for power and measurement

Main features

VIP400: Self-powered protection relay

This version is energised by the current transformers (CTs). It does not require an auxiliary power supply to operate.

- Overcurrent and earth fault protections
- Thermal overload protection
- Current measurement functions

VIP410: Dual powered protection relay

- Offers the same self-powered functions as the VIP 400
- In addition, the VIP410 has an AC or DC auxiliary supply to power certain additional functions that cannot be self-powered:
 - sensitive earth fault protection convenient to all earthing systems
- external tripping input
- cold load pick-up
- 2 setting groups selectable by communication
- communication (Modbus RS485 port)
- signalling relays
- If the auxiliary power fails during an MV short-circuit, the protection functions are maintained operational

Other features

- Designed for circuit breakers up to 630 A
- Complete pre-tested solution that eliminates complicated CT selection
- Complies with MV protection relay standard IEC 60255
- No PC or specific tool required for setting or commissioning
- Self-powered by dual core CTs: CSa4/CSb4
- Environment: -40°C / +70°C

Primary injection test

A primary injection circuit may be permanently installed (option) through the CTs, inside the cubicle, to test the physical integrity of the complete protection system including the CTs

- The test is carried out without disconnecting the CTs and the VIP relay displays the injected current during testing
- If required, a temporary VIP test mode can be activated to test the tripping of the circuit breaker by pressing a test pushbutton.

Test with the Pocket Battery module

- This accessory can be connected on the VIP relay front plate to energise the relay to carry out a quick test even though the relay is not powered.
- This test allows testing the circuit breaker.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF1 and SFset Fixed version

Protection, monitoring and control

VIP400 & VIP410 tripping curves

IEEE Extremely Inverse Curve (IEEE/EI or IEC/F)

IEEE Very Inverse Curve (IEEE/VI or IEC/E)

RI Curve

IEC Extremely Inverse Time Curve (IEC/EIT or IEC/C)

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF1 and SFset Fixed version

Protection, monitoring and control

Current sensors for VIP400 & 410

Cs type current sensors

Connection

Connection diagrams

VIP 410

VIP 400

CSa4 and CSb4 current sensors for the VIP400 & 410

In order to achieve the specified performance levels, the VIP400 & 410 protection unit must be used with the specified sensors. The combination of the unit/sensor is essential in order to comply with characteristics and in particular with:

- operation throughout the whole range
- response time
- accuracy
- short circuit thermal withstand.

Two interchangeable sensors, CSa4 and CSb4, suffice to cover all requirements from up to 630 A.

Sensor selection	Service current (Is)
CSa4	up to 200 A
CSb4	up to 630 A

High sensitivity sensors

VIP integrated protection system

The VIP integrated protection system is composed of sensors, a processing unit and an actuator, designed together to provide the highest level of reliability and sensitivity from 0,2A to 20 In for VIP 400/410

Sensors

The sensors are made up of three single phase CTs, providing both measurement and power outputs.

- The measurement sensor is based on Low Power Current Transformer (LPCT) technology, ensuring excellent accuracy :
 - 5P30 for protection
 - class 1 for measurement.
 - The power supply sensor ensures calibrated self-powering of the relay even for currents of just a few Amperes
- The protection sensors are located on the lower EvoPact SFset connections. The connection between all these elements, sensors and relay, is prefabricated and protected against external aggression, providing a higher level of reliability.

Actuators

- The actuator is a dedicated low power tripping coil (Mitop) specifically designed to operate with the sensors and the processing unit with a minimum energy.
- The integrity of the Mitop circuit is continuously supervised (Trip Circuit Supervision function).

EvoPact SF SF₆ Circuit breaker **Dimensions** up to 40.5 kV SF1 and SFset Fixed version

Operating mechanism on the right hand side (A1)

Operating mechanism on the left hand side (B1)

Н

EvoPact SF1, EvoPact SFset

350

Operating mechanism on the front (C1)

Dimensions and weights

EvoPact S Dimensions	F1				Eve Deet C	E			
Dimensions				EvoPact SF1					
Dimensions (mm)				Weight	Dimensions	Weight			
H	W	D	E	(kg)	н	W	D	E	(kg)
ht or left									
750	993	290	220	78	750	993	420	220	88
750	1143	290	280	80	750	1143	420	280	90
750	1560	365	380	88					
nt									
745	766	490	220	78	745	766	620	220	88
745	886	490	280	80	745	886	620	280	90
745	927	559	350	85				· · · · · · · · · · · · · · · · · · ·	
745	1260	565	380	88					
	Image: state	W ant or left 50 993 50 1143 50 1560 ant 1560 45 886 45 927 45 1260	W D att or left 50 993 290 50 1143 290 50 1560 365 50 1560 365 45 766 490 45 886 490 45 927 559 45 1260 565	W D E at or left 993 290 220 50 993 290 280 50 1143 290 280 50 1560 365 380 50 1560 365 220 45 766 490 220 45 886 490 280 45 927 559 350 45 1260 565 380	HWDE(kg)at or left5099329022078501143290280805015603653808850156036538088at45766490220784588649028080459275593508545126056538088	HDE(kg)HAt or left5099329022078750501143290280807505015603653808850156036538088t45766490220787454588649028080745459275593508545126056538088	H W D E (kg) H W at or left 50 993 290 220 78 750 993 50 1143 290 280 80 750 1143 50 1560 365 380 88	Image: Market	iWDE(kg)HWDEit or left509932902207875099342022050114329028080750114342028050156036538088

For EvoPact SF circuit breakers with SM6, consult us.

EvoPact SF SF₆ Circuit breaker **Dimensions** up to 40.5 kV

SF1 and SFset Fixed version

(cont.)

Operating mechanism on the left hand side (B1)

L/W

Operating mechanism on the front (C1)

EvoPact SF1, SFset

Dimensions and weights

	EvoPact SF1					EvoPact SFset						
Rated voltage (kV)	Dimensions (mm)				Weight	Dimension	Weight					
	н	W	D	E	(kg)	н	W	D	E	(kg)		
Operating mechanism on the right or left hand side												
17.5	1175	1065	600	220	103	1175	1065	600	220	103		
24	1175	1215	600	280	105	1175	1215	600	280	105		
36	1175	632	600	380	113							
Operating mechanism on the f	ront											
17.5	1175	853	600	220	103	1175	853	649	220	103		
24	1175	973	600	280	105	1175	973	649	280	105		
36	1175	1347	600	380	113							

(1) Additional holes, provided on the fixed support frame allow the device to be positioned 215 mm lower.

EvoPact SF SF₆ Circuit breaker **Dimensions** up to 40.5 kV

SF1 and SFset Fixed version

(cont.)

Note: recommended connection screw M8 class 8.8. Tightening torque: 28 Nm with contact washer.

EvoPact SF2 circuit breakers fixed version

Presentation	34		
General characteristics	35		
Description of functions	36		
GMH stored energy operating mechanism - Wiring diagram	36		
Opening circuit	37		
Remote control	38		
Indication and locking/interlocking	39		
Dimensions	40		

EvoPact SF SF₆ Circuit breaker **Presentation** up to 40.5 kV SF2 Fixed version

Description of the device

The basic fixed version of the EvoPact SF circuit breaker comprises:

- 3 main independent poles, that are mechanically linked and each comprising
- a "sealed pressure system" type insulating enclosure. The sealed enclosure is filled with low pressure SF₆ gas
- a GMH stored energy electrical operating mechanism. This gives the device an opening and closing speed that is independent of the operator, for both electrical and manual orders.

The circuit breaker can be remotely controlled and it is possible to carry out reclosing cycles.

- · a front panel housing the manual operating mechanism and status indicators
- · upstream and downstream terminals for the power circuit connection
- · a terminal block for connection of external auxiliary circuits.

The EvoPact SF circuit breaker is only available with a frontal operating mechanism.

Each device can be optionally equipped with:

- · a support frame fitted with rollers and floor securing brackets for a fixed installation
- · locking of the circuit breaker in the open position by a keylock installed on the control panel
- · a pressure switch for the high performance versions
- a Harting 42-pin type LV connector.

PE56501

Electrical characteristics	accordin	ng to IEC 62271-10	0										
					EvoPact SF2								
Rated voltage	Ur	kV 50/60 Hz		24				36					
Insulation voltage													
- power frequency withstand	Ud	kV 50 Hz 1min	kV 50 Hz 1min			50				70			
- lightning impulse withstand	Up	kV peak		125				170					
Rated current	lr	A	630	-	-			-			-		
			1250	-	-			-			-		
			2500										
			3150	-	-	-		-	-		-		
Short circuit current	lsc	kA		12.5	25	31.5	40	25	31.5	40	31.5		
Short time withstand current	lk/tk	kA/3 s		12.5	25	31.5	40	25	31.5	40	31.5		
Short-circuit making current	lp	kA peak	50 Hz	31.3	63	79	100	62.5	79	100	78.8		
			60 Hz	32.5	65	82	104	65	82	104	81.9		
Rated switching sequence		O-3 min-CO-3 min-CC											
		0-0.3 s-CO-3 min-CO					-			-			
		0-0.3 s-CO-15 s-CO				-		-	-	-			
Phase to phase		mm	300						-	-	-		
			400	-	-	-	-				-		
			457	-	-	-	-	-	-	-			
Operating mechanism		Frontal	Frontal										
Operating times		Opening (ms)		< 70									
		Breaking (ms)	Breaking (ms)			< 85							
		Closing (ms)	< 90										
Service temperature	Т	°C	°C			-25 to +40							
Mechanical endurance		Class	Class			M2							
		Number of switching	Number of switching operations			10,000							
Electrical endurance		Class		E2									
Capacitive current breaking capacity Class					C2								

Available – Not available

Specific applications

Switching and protection of capacitor banks

EvoPact SF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC . 62271-100.

Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV SF2 Fixed version

Description of functions

GMH stored energy operating mechanism - Wiring diagram

Operation of the electrical GMH stored energy mechanism

This gives the device an opening and closing speed that is independent of the operator whether the order is electrical or manual.

The electrical control mechanism carries out reclosing cycles and is automatically recharged by a geared motor each time after closing. It consists of:

- the stored energy operating mechanism which stores in springs the energy required to open and close the device
- a manual lever arming device for the springs
- an electrical arming device with a motor to automatically rearm the control mechanism as soon as the circuit breaker is closed (optional)
- manual push-button controls on the front face of the circuit breaker (red and black)
- an electrical remote-closing device comprising a release and an antipumping relay.
- an electrical opening device comprising one or several releases of the following type:
 - shunt opening
 - undervoltage
- an operation counter
- an open/closed position indicator with a mechanical indicator (black and white)
- an "armed" control mechanism status indicator with a mechanical indicator and an electrical contact (optional)
- a block of 14 auxiliary contacts, available according to the wiring layout used
- a pressure switch contact activated by a drop in gas pressure (optional: single or double threshold pressure switch).

Wiring diagram (principle)

Remote control
up to 40.5 kV SF2 Fixed version

EvoPact SF SF₆ Circuit breaker **Description of functions**

Opening circuit

Shunt opening release (1)

Undervoltage release (2)

Composition

The opening circuit can be produced using the following components:

- a shunt opening release (on energizing) (YO1)
- a second shunt opening release (on energizing) (YO2)
- undervoltage release (YM).

Note: see the table of the releases' combinations page "Order form" .

Shunt opening release (YO1 and YO2)

Energizing this unit causes instant opening of the circuit breaker.

Characteristics					
Power supply	See "Order form" page				
Threshold	V AC	0.85 to 1.1 Ur			
	V DC	0.7 to 1.1 Ur			
Consumption	V AC	160 VA			
	V DC	50 W			

Undervoltage release (YM)

This release unit causes the systematic opening of the circuit breaker when its supply voltage drops below a value less than 35% of the rated voltage, even if this drop is slow and gradual. It can open the circuit breaker between 35% and 70% of its rated voltage. If the release unit is not supplied power, manual or electrical closing of the circuit breaker is impossible. Closing of the circuit breaker is compulsory when the supply voltage of the release unit reaches 85% of its rated voltage.

Characteris	tics		
Power supply		See "Order form" page	
Threshold		Opening	0.35 to 0.7 Ur
		Closing	0.85 Ur
Consumption	Triggering	V AC	400 VA
		V DC	100 W
	Latched	V AC	100 VA
		V DC	10 W

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF2 Fixed version

Description of functions

Remote control

Electrical motor (4)

Shunt closing release (5)

Operation counter (6)

Function

Remote control enables the remote opening and closing of the circuit breaker.

Composition

The remote control mechanism comprises:

- an electrical motor with gearing
- a shunt closing release combined with an anti-pumping device
- an operation counter.

Electrical motor (M)

The electrical motor carries out the automatic rearming of the stored energy unit as soon as the circuit breaker is closed. This allows the instant reclosing of the device after opening. The arming lever is only used as a backup operating mechanism in the case of the absence of the auxiliary power supply. The M3 contact indicates the end of arming operations.

Characteristics						
Power supply	See "Order form" pa	ige				
Threshold	V AC/V DC	V AC/V DC 0.85 to 1.1 Ur				
Consumption	V AC	380 VA				
	V DC	380 W				

Shunt closing release (YF)

This release allows the remote closing of the circuit breaker when the operating mechanism is armed.

Characteristics						
Power supply	See "Order form'	See "Order form" page				
Threshold	V AC	0.85 to 1.1 Ur				
	V DC	0.85 to 1.1 Ur				
Consumption	V AC	160 VA				
	V DC	50 W				

The shunt closing release is combined with an anti-pumping relay that enables priority to be given to opening in the case of a permanent closing order. This thus avoids the device being caught in an uncontrolled opening-closing cycle.

Operation counter

The operation counter is visible on the front panel.

It displays the number of switching cycles (CO) that the device has carried out.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV SF2 Fixed version

Description of functions

Indication and locking/interlocking

Auxiliary contacts (7)

Keylocking kit (8)

"Open/closed" auxiliary contacts

The number of contacts available depends on the options chosen on the operating mechanism.

In the basic configuration, the circuit breaker's operating mechanism comprises a total of:

- 5 normally closed contacts (NC)
- 5 normally open contacts (NO)
- 1 changeover contact (CHG).

The usage procedure for auxiliary contacts is given in the following table:

Options			
	NC contact	NO contact	
Shunt opening release (each one)	0	1	
Undervoltage release	0	0	

In order to know the final number of available contacts, you must deduct the total number of contacts included in the circuit breaker (5 NC + 5 NO + 1 CHG), the number of contacts used given in the table above.

E.g.: a circuit breaker equipped with a remote control and a shunt trip unit has the following available contacts:

5 NC + 4 NO + 1 CHG.

With a undervoltage release instead of the shunt trip, this circuit breaker would have the following available contacts: 5 NC + 5 NO + 1 CHG.

Shunt opening release combination								
1st release	Shunt opening release YO1	Undervoltage release YM	Mitop					
2nd release								
Without	5NC+4NO+1CHG	5NC+5NO+1CHG	5NC+5NO+1CHG					
Shunt opening release YO2	5NC+3NO+1CHG	5NC+4NO+1CHG	5NC+4NO+1CHG					
Undervoltage release YM	5NC+4NO+1CHG		5NC+5NO+1CHG					

Locking the circuit breaker in the "open" position

This key-operated device allows the circuit breaker to be locked in the "open" position.

The circuit breaker is locked in the open position by blocking the opening push button in the "engaged" position.

Locking is achieved using a flat or tubular captive key type keylock.

EvoPact SF SF₆ Circuit breaker **Dimensions** up to 40.5 kV SF2 Fixed version

Basic fixed unit

Fixed unit with a support frame

Connection

DE 57426

630, 1250 A (24-36 kV)

117

Dimonoiono	and waights	
Dimensions	and weights	

		Basic fixed unit					Fixed unit with support frame				
Rated current	Rated voltage	Dimensions (mm) V		Weight	Dimensions (mm)				Weight		
(A)	(kV)	н	L	Р	E	(kg)	н	L	Р	E	(kg)
630, 1250	24	825	910	750	300	159	1030	910	750	300	179
	36	825	1110	750	400	212	1030	1110	750	400	239
	40.5	825	1224	750	457	242	1030	1224	750	457	272
2500, 3150	24	942	910	777	300	174	1147	910	777	300	194
	36	942	1110	777	400	227	1147	1110	777	400	254
	40.5	942	1224	777	457	242	1147	1224	777	457	272

Notes

EvoPact SF F400 circuit breakers withdrawable version

Presentation	44
General characteristics	45
Description of functions	46
Racking-in	46
MV and LV connection	48
GMH stored energy operating mechanism - Wiring diagram	49
Opening circuit	50
Remote control	51
Indication and locking/interlocking	52
Safety functions	53
Dimensions	54

EvoPact SF SF₆ Circuit breaker **Presentation** up to 40.5 kV SF F400 Withdrawable version

Device description

The basic withdrawable version of the EvoPact SF circuit breaker comprises:

- The circuit breaker unit with its control mechanism:
 - 3 main independent poles, that are mechanically linked and each comprising
 - a "sealed pressure system" type insulating enclosure. The sealed enclosure is filled with low pressure SF₆ gas
 - a GMH stored energy electrical operating mechanism
 - This gives the device an closing and opening speed that is independent of the operator, whether the control order is electrical or manual. When remotely controlled, the circuit breaker allows reclosing cycles to be performed
 - a front face with status indicators
- Racking components:
 - the circuit breaker is equipped with racking arms and clusters. It is mounted

on a racking/unracking unit with a threaded shaft actuated by a crank which includes all of the safety interlocking systems

- a Harting type male LV connector for external auxiliary circuits
- a circuit breaker control mechanism spring discharge system
- a circuit breaker racking-in blocking mechanism

The EvoPact SF circuit breaker is only available with front controls.

Each device can be fitted with the following options:

- · Position locking of the circuit breaker:
 - open, by a keylock installed on the control panel
 - racked out, by a keylock installed on the racking device
- The M1 and M2 basic cradles comprising:
 - a metal structure and one guide rail
 - fixed connector fingers insulated by bushings
 - metal insulating shutters for the MV part
 - safety interlocking systems
 - Harting type female LV connector
 - indicator contacts for circuit breaker racked-in or racked-out positions (4 NO + 4 NC)
 - an equipped door
 - a foolproofing system for the circuit breaker rating.

Electrical characteristics according to IEC 62271-100

				EvoPac	t SF F40	0		
Rated voltage	Ur	kV 50/60 Hz		36			40,5	
Insulation voltage								
- power frequency withstand	Ud	kV 50 Hz 1min		70	70			85
- lightning impulse withstand	Up	kV peak		170			185	185
Rated current	lr	A	1250					
			2500	-			-	-
Short circuit current	lsc	kA		25	31.5	40	25	31.5
Short time withstand current	lk/tk	kA/3 s		25	31.5	40	25	31.5
Short-circuit making current	lp	kA peak	50 Hz	62.5	79	100	62.5	79
			60 Hz	65	82	104	65	82
Rated switching sequence		O-3 min-CO-3 min-CO						
		0-0.3 s-CO-3 min-CO				-		
		0-0.3 s-CO-15 s-	-CO		-	-	-	-
Phase to phase		mm	300					•
Operating mechanism		Frontal						
Operating times		Opening (ms)	Opening (ms)		< 70			
		Breaking (ms)				< 85		
		Closing (ms)				< 90		
Service temperature	Т	°C		-25 to +40				
Mechanical endurance		Class		M2				
		Number of switc	hing operations			10,000		
Electrical endurance		Class				E2		
Capacitive current breaking capacity		Class		C2				

Available

– Not available

Specific applications

Switching and protection of capacitor banks

EvoPact SF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC 62271-100.

Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV SF F400 Withdrawable version

DE57306

EvoPact SF SF 6 Circuit breaker **Description of functions**

Racking-in

Protective shutters

Overall composition

- The "racking-in/racking-out" function is achieved by:
- the EvoPact SF F400 withdrawable Circuit Breaker (CB) with its LV connector (moving part)
- the M1 or M2 cradles with their bushings (fixed part).

Switching the circuit breaker

The withdrawable circuit breaker can be moved between three stable positions:

- service position: the circuit breaker racked-in and locked in position, the LV connector is connected
- test position: the circuit breaker is racked-out and locked in position, the LV connector is connected
- disconnected position: the circuit breaker is racked-out and locked in position, the LV connector is disconnected.

EvoPact SF F400 circuit breaker safety functions

A racking system with a threaded shaft makes it easier to rack-in and rack-out.

Test position contact

This is activated when the CB is in the "test" or "service" positions. Earthing is achieved throughout the operation through the racking carriage wheels.

Interlocking

In conformity with standards IEC 62271-100 and 62271-200, the following interlocks are available:

- prohibiting racking-in or racking-out if the CB is not in the open position
- · prohibiting racking-in of the CB if the LV connector is not connected
- prohibiting disconnecting of the LV connector if the CB is not racked-out.

Interlocking with the cubicle door

The racking base is equipped with a device that allows interlocking between racking-out of the circuit breaker and the cubicle door.

- · only possible to rack-in the circuit breaker if the door is closed
- only possible to open the door if the circuit breaker is racked-out.
- This device must be disabled if this interlocking function is not present.

M1 and M2 cradles safety features

The M1 or M2 cradles are fitted with the EvoPact SF F400 circuit breaker and comprise the following safety features for racking-in.

A metal structure with one guide rail

The rail guides the circuit breaker during racking-in/racking-out operations.

Fixed connector fingers, insulated by bushings

The three ends of the cicuit breaker, with their racking clusters, make the contact with these three fingers.

Metal insulating shutters for the MV part

Protective shutters mounted on the structure stop fingers from accessing the racking mechanism when the circuit breaker is extracted (protection index: IP2X).

Safety interlocking systems

When carrying out maintenance operations it is possible to:

- · padlock the shutters in the locked position
- unlock the fixed contact access mechanism.

A control spring discharge system

The springs of the circuit breaker mechanism are automatically discharged when it is extracted from the cradle. This function avoids any risk of nuisance closing of the circuit breaker.

Foolproofing system

This allows the circuit breaker rating to be matched to the cradle rating. This system is mounted on the cradle side. The panel builder must ensure that the right circuit breaker rating is being used. EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Description of functions

Racking-in

(cont.)

PE0001

For further operator safety it is possible to use a padlock:

- on the connector to lock the selector
- · on the shutter protecting the mechanical opening pushbutton
- on the shutter opening mechanism in the circuit breaker compartment
- on the rotary voltage transformer switching mechanism.

A mechanism to prohibit racking-in of the moving part

A mechanism associated with a padlock or a keylock prohibits the racking-in of the moving part. Locking is either achieved via:

- 1 to 3 padlocks, not supplied
- 1 keylock (optional).

A blocking system for the circuit breaker opening order, when it is closed

This device can also be used as an additional way of prohibiting racking-in and out. A transparent shutter blocks access to the opening and closing pushbutton. The device allows independent locking of the opening or closing button. It is often associated with an electrical motor (M). Locking is achieved by a padlock (not supplied) mounted on the shutter protecting the mechanical opening pushbutton.

A system to prohibit disconnection of the moving part

This keylocking system prohibits disconnection of the moving part. It may be used for a circuit breaker or for a racking base.

Optional accessories

- a self-adhesive front plate shows circuit breaker racking-in and rackingout operations. It is systematically delivered when the circuit breaker is ordered
 - with the cassette or can be ordered separately.
- 4 "racked-in/racked-out" position contacts.
- 1 position contact for the cassette locked in the "racked-in/racked-out" position.
- a keylocking system (flat or tubular) for the circuit breaker in the "racked-in" or "racked-out" position.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV SF F400 Withdrawable version

EvoPact SF SF₆ Circuit breaker **Description of functions**

MV and LV connection

MV Connection

The customer connection is easily carried out from the back of M1 and M2 cradles using the upper and lower bushings.

MV connection with M1 cradle

MV connection with M2 cradle

LV connection

With the withdrawable circuit breaker, LV wiring uses an LV connector with:

- the moving part (male Harting socket) at the end of a flexible cable, entirely connected to the control mechanism terminal via a bellow
- the fixed part (female Harting socket) compatible with the male part mounted

on the top inside part of the cassette.

Interlocking function

In conformity with standard IEC 62271-200, an interlocking function prohibits:

- racking-in when the LV connector is not connected
- disconnection of the LV connector if the circuit breaker is in the racked-in position.

LV plug connection

EvoPact SF SF₆ Circuit breaker up to 40.5 kV SF F400 Withdrawable version

Description of functions

GMH stored energy operating mechanism Wiring diagram

Operation of the electrical GMH stored energy mechanism

This gives the device an opening and closing speed that is independent of the operator whether the order is electrical or manual.

The electrical control mechanism carries out reclosing cycles and is automatically recharged by a geared motor each time after closing.

It consists of:

- the stored energy operating mechanism which stores in springs the energy required to open and close the device
- a manual lever arming device for the springs
- an electrical arming device with a motor to automatically rearm the control mechanism as soon as the circuit breaker is closed (optional)
- manual push-button controls on the front face of the circuit breaker (red and black)
- an electrical remote-closing device comprising a release and an antipumping relay.
- an electrical opening device comprising one or several releases of the following type:
 - shunt opening
 - undervoltage.
- an operation counter
- an open/closed position indicator with a mechanical indicator (black and white)
- an "armed" control mechanism status indicator with a mechanical indicator and an electrical contact (optional)
- a block of 14 auxiliary contacts, available according to the wiring layout used
- a pressure switch contact activated by a drop in gas pressure (optional: single or double threshold pressure switch).

Wiring diagram (principle)

Remote control

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Description of functions

Opening circuit

Operating mechanism

Shunt opening release (1)

Undervoltage release (2)

Composition

The opening circuit can be produced using the following components:

- a shunt opening release (on energizing) (YO1)
- a second shunt opening release (on energizing) (YO2)
- undervoltage release (YM).

Note: see the table of the releases' combinations page "Order form" .

Shunt opening release (YO1 and YO2)

Energizing this unit causes instant opening of the circuit breaker.

Characteristics					
Power supply	See "Order form" page				
Threshold	VAC	0.85 to 1.1 Ur			
	VDC	0.7 to 1.1 Ur			
Consumption	V AC	160 VA			
	V DC	50 W			

Undervoltage release (YM)

This release unit causes the systematic opening of the circuit breaker when its supply voltage drops below a value less than 35% of the rated voltage, even if this drop is slow and gradual. It can open the circuit breaker between 35% and 70% of its rated voltage. If the release unit is not supplied power, manual or electrical closing of the circuit breaker is impossible. Closing of the circuit breaker is compulsory when the supply voltage of the release unit reaches 85% of its rated voltage.

Characteristics

Unaracteris	1105		
Power supply		See "Order form" page	
Threshold		Opening	0.35 to 0.7 Ur
		Closing	0.85 Ur
Consumption	Triggering	VAC	400 VA
		VDC	100 W
	Latched	VAC	100 VA
		VDC	10 W

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Description of functions

Remote control

Operating mechanism

Electrical motor (4)

Shunt closing release (5)

Operation counter (6)

Function

Remote control enables the remote opening and closing of the circuit breaker.

Composition

The remote control mechanism comprises:

- · an electrical motor with gearing
- · a shunt closing release combined with an anti-pumping device
- an operation counter.

Electrical motor (M)

The electrical motor carries out the automatic rearming of the stored energy unit as soon as the circuit breaker is closed. This allows the instant reclosing of the device after opening. The arming lever is only used as a backup operating mechanism in the case of the absence of the auxiliary power supply. The M3 contact indicates the end of arming operations.

Characteristics					
Power supply	See "Order form" page				
Threshold	V AC/V DC 0.85 to 1.1 Ur				
Consumption	V AC	380 VA			
	V DC	380 W			

Shunt closing release (YF)

This release allows the remote closing of the circuit breaker when the operating mechanism is armed.

Characteristics						
Power supply	See "Order form	See "Order form" page				
Threshold	V AC	0.85 to 1.1 Ur				
	V DC	0.85 to 1.1 Ur				
Consumption	V AC	160 VA				
	V DC	50 W				

The shunt closing release is combined with an anti-pumping relay that enables priority to be given to opening in the case of a permanent closing order. This thus avoids the device being caught in an uncontrolled opening-closing cycle.

Operation counter

The operation counter is visible on the front panel. It displays the number of switching cycles (CO) that the device has carried out.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Description of functions

Indication and locking/interlocking

"Open/closed" auxiliary contacts

The number of contacts available depends on the options chosen on the operating mechanism.

In the basic configuration, the circuit breaker's operating mechanism comprises a total of:

- 5 normally closed contacts (NC)
- 5 normally open contacts (NO)
- 1 changeover contact (CHG).

The usage procedure for auxiliary contacts is given in the following table:

Options

	NC contact	NO contact
Shunt opening release (each one)	0	1
Undervoltage release	0	0
Low energy release (Mitop)	0	0

In order to know the final number of available contacts, you must deduct the total number of contacts included in the circuit breaker (5 NC + 5 NO + 1 CHG), the number of contacts used given in the table above.

E.g.: a circuit breaker equipped with a remote control and a shunt trip unit has the following available contacts:

With a undervoltage release instead of the shunt trip, this circuit breaker would have the following available contacts:

Э	NC	+	Э	NO	+	L	υг	JG

Shunt opening release combination								
1st release	Shunt opening release YO1	Undervoltage release YM	Mitop					
2nd release								
Without	5NC+4NO+1CHG	5NC+5NO+1CHG						
Shunt opening release YO2	5NC+3NO+1CHG	5NC+4NO+1CHG	5NC+4NO+1CHG					
Undervoltage release YM	5NC+4NO+1CHG		5NC+5NO+1CHG					
Mitop	5NC+4NO+1CHG	5NC+5NO+1CHG						

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Description of functions Safety functions

This table describes the safety functions available on the EvoPact SF circuit breaker withdrawable version. How to use the table Each of the boxes describes the functional status of each circuit breaker position

and the associated parts:

Possible status

Possible status, impossible operation

Impossible status

Parts		Circuit brea	Circuit breaker positions					
		DE574ZT	Insertion	DEFIAIT	DEFIAIT	Racking-in		
		Removed		Disconnected	Test position		Service	
1 - Cassette			Fool-proof protection ⁽¹⁾					
			No opening shutters					
		Shutters padlo	ocking possible					
2 - LV plug	Disconnected			No door closing	\geq	\geq	\geq	
	Connected		\supset			No unplugging (4)		
3 - Circuit breaker	Closed		Auto-discharge		No racking-in	\geq	No racking-out	
	Open		function (2)			No closing		
			Open	position circuit bre	eaker locking avail	able ⁽²⁾		
4 - Switchboard door	Open				No racking-in	\geq	\geq	
	Closed					No door opening ⁽³)	

(1) This protection mechanism ensures that the performance levels of the circuit breaker correspond with those of the cradle

(2) Option

(3) Interlocking device to be fitted to the cubicle door
 (4) Because the door is closed

EvoPact SF SF₆ Circuit breaker **Dimensions** up to 40.5 kV SF F400 Withdrawable version

Basic withdrawable unit EvoPact SF F400/M1 **Dimensions and weights** DE57431 1375 DE 57432 ≥ 31.5 kA < 31.5 kA Dimensions (mm) A 738 752 В 540 533 С 2030 2030 D 36 40 ٩ Weight (kg) 850 750 . 1820 1486 Q b ٧ ←500-◀-40 D > →300→300→ -1749 1825 1100 -С DE57433 ન 60 L3 — I L2 — I 60 L1 ⊏ 00 =Т 225 ė= 1127 EvoPact SF F400/M2 **Dimensions and weights** DE57441 DE57442 **≻||≺**D 1375 < 31.5 kA ≥ 31.5 kA Dimensions (mm) A 1278 1285 2030 С 2030 D 36 40 Weight (kg) 750 850 Ø 1820 1486 A A 546 -286 ←500-←40 > 300 - 300 --1567 1100 -1749 1825 1865 2008 С DE57433 ᄃ L3 🗆 60 L2 ⊏ 60 -T 00 L1 == Y Į. 225

1127

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

SF F400 Withdrawable version

Dimensions

(cont.)

Services

Schneider Electric services					
ProDiag Breaker	59				
Separated components	60				

up to 40.5 kV

EvoPact SF SF₆ Circuit breaker Schneider Electric Services

Peace of mind througout your installation life cycle

Services

Service Lifecycle Management

Connected switchgear is a foundational element of EcoStruxure, Schneider Electric, open, and interoperable system architecture.

Connectivity offers customers greater visibility of their facilities and more control over operational health.

How	to	improve	site	safetv
		mprovo	onto	ounory

R Electrical Safety Training **Electrical Distribution** A

Consulting Services

- Detect any knowledge gaps and attend appropriate e-learning, practical and hands-on electrical safety training courses.
- · Our consulting services portfolio offers asset health analysis for your site and recommends preventive actions.

How to improve protection your new installation

1

Service Plans		Knowing your installation with the right service plan.
R Maintenance Services	I)	• A complete solution to maintain your equipment. Helping ensure service continuity and peace of mind at every step.
How to modernize aging	infrastruc	ture
R Digitized Modernization	B	 Modernize your electrical distribution switchgear with pre-engineered retrofit service solutions.
		\bullet Peace-of-mind for your transition to $SF_{G}\text{-}free$ medium voltage switchgear.
ଜ Spare Parts Management	X	Spare part availability and reduced downtime.

All pictures of the catalogue illustrate the product in an environment close to reality. They were taken off-line. For live operation the P.P.E. (personal protective equipment) must be used in accordance with the regulations of the place of installation.

Find more information here

EvoPact SF SF₆ Circuit breaker **ProDiag Breaker** up to 40.5 kV

Services

Diagnosis of MV and LV Circuit Breakers

ProDiag Breaker Objectives

Your priority is to enhance the reliability of your installation

- to ensure its continuity of service,
- to minimize the time for maintenance & repair
- to perform maintenance
- only on the equipment requiring it and only when necessary (conditional preventive maintenance).

Results

What is ProDiag Breaker?

ProDiag Breaker is a Schneider Electric diagnosis tool.

ProDiag Breaker compares the mechanical and electrical parameters measured during the full operation of circuit breakers with the data collected from our production facilities. This allows detecting possible failure in advance. It measures, records and displays on a screen the key electrical parameters in MV and LV circuit breakers, relating to opening, closing and springloading operations

All this data is automatically compared with the criteria for the circuit breaker designated in the software, which indicates which values are within the acceptable range, which are on the limit and which are outside it.

Two tests are always performed on each circuit breakers, one at minimum voltage and one at nominal voltage. A written report is generated and provided by Schneider Electric so that the customer can use it as a tool to define the necessary corrective action (maintenance, repair or replacement).

ProDiag Breaker is part is part of ProDiag preventive maintenance plan

- Evaluation of circuit breakers using ProDiag Breaker includes:
 - Evaluation of the operating mechanism.
 - Measurement and comparison of the actual contact resistance with that specified by the manufacturer.
 - Measurement and comparison of the insulation resistance.
- Evaluation of the general circuit breaker conditions based on the captured data

Moreover, analysis of the ProDiag Breaker time/ travel curve combined with the current curve of the coil and phase contact detects possible faults, such as:

- Worn out latches and operating mechanisms.
- Faulty coils.
- Mechanical wear and tear and hardening of lubricating grease.
- Defective shock absorbers.
- Defective simultaneous contact operation (opening/closing).

Some maintenance programmes involve dismantling the circuit breaker mechanism to check its condition. ProDiag Breaker using signals captured from the circuit breaker operation, reduces maintenance costs compared with programs which check the circuit breakers manually.

Where can ProDiag Breaker reduce costs?

- ProDiag Breaker significantly reduces the time taken to identify potential faults in a circuit breaker, using operational analysis rather than inspection and mechanical re-sets.
- The software analyses the captured data and identifi es the specifi c problem area.
- A device's normal operating life is increased by timely diagnostics of when and what repairs are necessary.
- The tool comprises both hardware and software, resulting in a highly efficient predictive maintenance program.

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

Services

Separated components For EvoPact SF1-SFset ranges with RI arrangement

The following components can be ordered separately and can be adapted or replaced by the customer.

These references are available through SPEED intranet site

Auxiliaries

Shunt opening release		Y01 & Y02		
	24 Vdc		type 1 arrangement A1 & C1	SPK0040SF1
			type 1 arrangement B1	SPK0039SF1
			type 2	887191HM
	30 Vdc		type 1 arrangement A1 & C1	SPK0039SF1
			type 1 arrangement B1	889705BL
			type 2	SPK0003SFS
	32 Vdc		type 1 arrangement A1 & C1	SPK0039SF1
			type 1 arrangement B1	889705BL
			type 2	SPK0003SFS
	48 Vdc		type 1 arrangement A1 & C1	889705BK
			type 1 arrangement B1	889705BJ
			type 2	SPK0002SFS
	60 Vdc		type 1 arrangement A1 & C1	889705BJ
			type 1 arrangement B1	889705BH
			type 2	SPK0001SFS
	110 Vdc		type 1 arrangement A1 & C1	SPK0034SF1
			type 1 arrangement B1	SPK0034SF1
			type 2	887191HF
	120 Vdc		type 1 arrangement A1 & C1	SPK0034SF1
			type 1 arrangement B1	889705BE
			type 2	887191HE
	125 Vdc		type 1 arrangement A1 & C1	SPK0034SF1
			type 1 arrangement B1	889705BE
			type 2	887191HE
	220 Vdc		arrangement A1 & C1	SPK0032SF1
lesi,			arrangement B1	SPK0032SF1
			type 2	887191HC
	48 Vac	50 Hz	type 1 arrangement A1 & C1	SPK0042SF1
-			type 1 arrangement B1	SPK0041SF1
			type 2	887191HP
	110 Vac	50 Hz	type 1 arrangement A1 & C1	SPK0039SF1
			type 1 arrangement B1	889705BL
			type 2	SPK0003SFS
	120 Vac	50 Hz	type 1 arrangement A1 & C1	889705BL
			type 1 arrangement B1	889705BL
			type 2	887191HK
	220 Vac	50 Hz	type 1 arrangement A1 & C1	889705BJ
			type 1 arrangement B1	889705BH
			type 2	SPK0001SFS
	230 Vac	50 Hz	type 1 arrangement A1 & C1	889705BH
			type 1 arrangement B1	889705BH
			type 2	SPK0001SFS
	120 Vac	60 Hz	type 1 arrangement A1 & C1	SPK0040SF1
			type 1 arrangement B1	889705BL
			type 2	SPK0003SFS
	230 Vac	60 Hz	type 1 arrangement A1 & C1	889705BK
			type 1 arrangement B1	889705BH
			type 2	SPK0001SFS
	240 Vac	60 Hz	type 1 arrangement A1 & C1	889705BK
			type 1 arrangement B1	889705BH
			type 2	SPK0001SFS

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

Services

Separated components

For EvoPact SF1-SFset ranges with RI arrangement

Shunt closing release			YF		
	24 Vdc		Anti pumping Relay	MV261207	
			type 1 arrangement A1, B1, C1	SPK0030SF1	
			type 2	887191HM	
	30 Vdc		Anti pumping Relay	MV261208	
			type 1 arrangement A1, B1, C1	889705AL	
			type 2	SPK0003SFS	
	32 Vdc		Anti pumping Relay	MV261209	
			type 1 arrangement A1, B1, C1	889705AL	
			type 2	SPK0003SFS	
	48 Vdc		Anti pumping Relay	MV261209	
			type 1 arrangement A1, B1, C1	SPK0028SF1	
			type 2	SPK0002SFS	
	60 Vdc		Anti pumping Relay	MV261210	
			type 1 arrangement A1, B1, C1	889705AH	
			type 2	SPK0001SFS	
	110 Vdc		Anti pumping Relay	MV261211	
			type 1 arrangement A1, B1, C1	SPK0026SF1	
			type 2	887191HF	
	125 Vdc		Anti pumping Relay	MV261212	
			type 1 arrangement A1, B1, C1	SPK0025SF1	
			type 2	887191HE	
	220 Vdc		Anti pumping Relay	MV261213	
			type 1 arrangement A1, B1, C1	SPK0012SF1	
			type 2	887191HC	
	48 Vac	50 Hz	Anti pumping Relay	MV261215	
36			type 1 arrangement A1 & C1	889705AQ	
			type 1 arrangement B1	889705AP	
			type 2	887191HP	
	110 Vac	50 Hz	Anti pumping Relay	MV261216	
			type 1 arrangement A1 & C1	SPK0030SF1	
			type 1 arrangement B1	889705AL	
			type 2	SPK0003SFS	
	120 Vac	50 Hz	Anti pumping Relay	MV261216	
			type 1 arrangement A1 & C1	SPK0030SF1	
			type 1 arrangement B1	889705AL	
			type 2	887191HK	
	220 Vac	50 Hz	Anti pumping Relay	MV261218	
			type 1 arrangement A1 & C1	SPK0028SF1	
			type 1 arrangement B1	889705AH	
			type 2	SPK0001SFS	
	230 Vac	50 Hz	Anti pumping Relay	MV261218	
			type 1 arrangement A1 & C1	SPK0028SF1	
			type 1 arrangement B1	889705AH	
			type 2	SPK0001SFS	
	120 Vac	60 Hz	Anti pumping Relay	MV261216	
			type 1 arrangement A1 & C1	SPK0030SF1	
			type 1 arrangement B1	889705AL	
			type 2	SPK0003SFS	
	230 Vac	60 Hz	Anti pumping Relay	MV261218	
			type 1 arrangement A1 & C1	SPK0028SF1	
			type 1 arrangement B1	SPK0028SF1	
			type 2	SPK0001SFS	
	240 Vac	60 Hz	Anti pumping Relay	MV261218	
			type 1 arrangement A1 & C1	SPK0028SF1	
			type 1 arrangement B1	SPK0028SF1	
			type 2	SPK0001SFS	
Zelio (RXM) relay adaptation	h kit for RI			MV261246	

EvoPact SF SF₆ Circuit breaker up to 40.5 kV Eor EvoPact SE1 SEsot ranges

For EvoPact SF1-SFset ranges with RI arrangement

Services

Undervoltage release	е		YM	
	24 Vdc		arrangement B1/C1	889772AB
			arrangement A1	SPK0007SFS
	30 Vdc		arrangement B1/C1	889772AC
			arrangement A1	SPK0008SFS
	48 Vdc		arrangement B1/C1	889772AE
			arrangement A1	SPK0009SFS
	60 Vdc		arrangement B1/C1	889772AF
			arrangement A1	SPK0019SF1
-	110 Vdc		arrangement B1/C1	889772AH
So of			arrangement A1	SPK0010SFS
	125 Vdc		arrangement B1/C1	889772AJ
			arrangement A1	SPK0011SFS
	220 Vdc		arrangement B1/C1	889772AM
B			arrangement A1	889772CM
	48 Vac	50 Hz	arrangement B1/C1	889773AQ
	110 Vac 220 Vac	50 Hz 50 Hz	positon B1/C1	889773AU
			arrangement A1	889773CU
			arrangement B1/C1	889773AX
			arrangement A1	889773CX
	120 Vac	60 Hz	arrangement B1/C1	889773AU
			arrangement A1	889773CU
	240 Vac	60 Hz	arrangement B1/C1	889773AX
			arrangement A1	889773CX
Electrical motor & G	ea <mark>r reduc</mark> ei			
	24 to 32 Vd	с		51072122A1
DEBOO	48 to 60 Va	c/dc		51072122B1
	110 to 127	Vac/dc		51072122C1
	220 to 250	Vac/dc		51072122D1
LV connection				
Concessor (a) 1 To WINN	Male plug 8	klead	arrangement A1	MV261073
			arrangement B1	MV261069
			arrangement C1	MV261075

Contacts

Auxiliary contacts		
CONTRACTOR OF CONTRACTOR	8NO + 8NC	MV261239
End of charging		
DAMOREZEA	contact M1, M2, M3	AAV85908
micro switch SE & SQ		
	contact SE & SQ	730734A

EvoPact SF SF₆ Circuit breaker up to 40.5 kV Separated components

Services

For EvoPact SF1-SFset ranges with RI arrangement

Access	nride
ALLESS	

arrangement A1/B1	888559D
arrangement C1	888559A
arrangement C1 PP350	889973A
arrangement SFset A1	888559C
arrangement SFset B1	888559B
	arrangement A1/B1 arrangement C1 arrangement C1 PP350 arrangement SFset A1 arrangement SFset B1

CB s

DM105403

upport frame		
	PP220 arrangement A1/B1 - H 550 mm	888613A
	PP220 arrangement C1 - H 550 mm	888613G
	PP220 arrangement A1/B1 - H 775 mm	888613B
	PP220 arrangement C1 - H 775 mm	888613H
	PP280 arrangement A1/B1 - H 550 mm	888613C
	PP280 arrangement C1 - H 550 mm	888613J
Noter -	PP280 arrangement A1/B1 - H 775 mm	888613D
	PP280 arrangement C1 - H 775 mm	888613K
	PP380 arrangement A1/B1 - H 550 mm	888613E
	PP380 arrangement C1 - H 550 mm	888613L
	PP380 arrangement A1/B1 - H 775 mm	888613F
	PP380 arrangement C1 - H 775 mm	888613M
	Wheel	879585

Locking, interlocking		
E 28039	Open arrangement circuit-breaker locking (without lock)	888516A
° and and a set of the set of th	Flat key type	AAV86887
A COLOR	Tubular key type	AAV86892

Accessories for protection relay		
	Test VAP 6 (for VIP 300 series)	03143843FA
	Pocket battery module (for VIP 400 series)	LV434206

Indicator

Push buttons (open	/ closed)		
	IEC	Red	888408
DM10540		Black	888407
() · ·	ANSI	Green-red O/C	0732826B

Services

EvoPact SF SF₆ Circuit breaker up to 40.5 kV Separated components For EvoPact SF1-SF2 ranges with GMH mechanism

The following components can be ordered separately and can be adapted or replaced by the customer.

These references are available through SPEED intranet site

Auxiliaries

Shunt opening r	elease		Y01 & Y02
	24 Vdc		9015608M1
	30 Vdc		9015608L1
	48 Vdc		9015608J1
885 a	60 Vdc		9015608H1
	110 Vdc		9015608E1
	125 Vdc		9015608E1
	220 Vdc		9015608B1
	48 Vac	50 Hz	9015608N1
	110 Vac	50 Hz	9015608K1
	220 Vac	50 Hz	9015608H1
	120 Vac	60 Hz	9015608L1
	240 Vac	60 Hz	9015608H1

Shunt closing release		YF		
	24 Vdc		Anti pumping Relay	MV261207
			Closing release	9015616M1
	30 Vdc		Anti pumping Relay	MV261208
			Closing release	9015616L1
	48 Vdc		Anti pumping Relay	MV261209
			Closing release	9015616J1
	60 Vdc		Anti pumping Relay	MV261210
			Closing release	9015616H1
	110 Vdc		Anti pumping Relay	MV261211
			Closing release	9015616F1
	125 Vdc		Anti pumping Relay	MV261212
			Closing release	9015616E1
	220 Vdc		Anti pumping Relay	MV261213
			Closing release	9015616B1
	110 Vac	50 Hz	Anti pumping Relay	MV261216
			Closing release	9015616L1
	220 Vac	50 Hz	Anti pumping Relay	MV261218
			Closing release	9015616H1
	120 Vac	60 Hz	Anti pumping Relay	MV261216
			Closing release	9015616M1
	240 Vac	60 Hz	Anti pumping Relay	MV261217
			Closing release	9015616J1
Zelio (RXM) relay adaptation kit for GMH			MV261247	

EvoPact SF SF₆ Circuit breaker up to 40.5 kV Ear EvoPact SE1 SE2 ranges

For EvoPact SF1-SF2 ranges with GMH mechanism

Services

Undervoltage rel	ease	YM
	24 Vdc	9015612A1
	30 Vdc	889772BC
	48 Vdc	9015612B1
66	60 Vdc	9015612C1
	110 Vdc	9015612Q1
	125 Vdc	9015612D1
	220 Vdc	9015612F1
	48 Vac 50 Hz	SPK0002SF2
	110 Vac 50 Hz	9015612J1
	220 Vac 50 Hz	9015612L1
	120 Vac 60 Hz	9015612J1
	240 Vac 60 Hz	9015612L1
Electrical motor	& Gear reducer	
	24 to 32 Vdc	9011042A1
5405	48 to 60 Vac/dc	9011042B1
Ma	110 to 127 Vac/dc	9011042C1
	220 to 250 Vac/dc	9011042D1
	380 Vac	9011042F1
	Gear reducer	9011147C1

Contacts

Auxiliary contacts		
55406 55407	5 contacts	0877942K1
HNI THE REAL	9 contacts	0877942C1
End of charging		
DM105408	contact M1, M2, M3	9010107B1
micro switch SE & SQ		
SESSONG	contact SE & SQ	730734A

Accessories

Locking, interlocking		
660 89	Open position circuit-breaker locking (without lock)	887647A
and and a set of the s	Flat key type	AAV86887
The second	Tubular key type	AAV86892

Order form

EvoPact SF1 lateral / frontal fixed	68
EvoPact SFset lateral / frontal fixed	69
EvoPact SF2 fixed	70
EvoPact SF F400 withdrawable	71

EvoPact SF SF₆ Circuit breaker EvoPact SF1 up to 40.5 kV Order form

Only one of the boxes (ticked X or filled by the needed value) have to be considered between each horizontal line. Green box X corresponds to none priced functions.

lateral / frontal fixed

Order Form

Basic fixed circuit b	reaker		Quantity
Rated voltage Ur			(kV)
Impulse voltage Up			(kVbil)
Short-circuit current lsc			
Bated current Ir			
Frequency		50 Hz	60 Hz
Operating mechanism posit	ion	A1	B1 C1
Color for push buttons and i	ndicators		
Push buttons open/close:	nuicators		
IEC Red/Black	C Red/Green	ANSI Red/Gree	ANSI Red/Black
Indicator open/close:			
IEC Black/White			ANSI Red/Green
Operating mechanism charge	d/discharged:		
IEC White/Yellow		AN	ISI Charged/Discharged
Circuit breaker optic	ons		
1st opening release (see p	ossible choices	in combination table	below)
Shunt opening release YO1			
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
30 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Undervoltage release YM			
24 Vdc			220 Vac (50 Hz)
30 Vdc	125 Vdc	46 Vac (50 Hz)	240 Vac (60 Hz)
Mitop	120 Vuc	Without contact	With contact
		malour contact	
2nd opening release (see	possible choic	es in combination tab	le below)
Shunt opening release YO2		_	_
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
30 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Undervoltage release YM	· · · · · · [1	
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
30 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vac	125 Vac	Without contact	240 Vac (60 Hz)
		Without contact	With contact
Remote control			
Electrical motor M		2432 Vdc	110127 Vdc/ac
		4860 Vdc/ac	220250 Vdc/ac
Shunt closing release YF			
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
30 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Low voltage wiring connect	ion	Male plug (1.2 m)	Female socket (2 m)
LUCKING U.B. IN Open positio	n	Flat	Iubular
l eaflets language		LUW (300 IIIII)	Figli (775 filfi)
Pressure switch		Tenon	

EvoPact SF SF₆ Circuit breaker up to 40.5 kV EvoPact SFset

Order form

Only one of the boxes (ticked X or filled by the needed value) have to be considered between each horizontal line. Green box X corresponds to none priced functions.

lateral / frontal fixed

Order Form

Basic fixed circuit breaker	r	Quantity
Rated voltage Ur		(kV)
Impulse voltage Up		(kVbil)
Short-circuit current lsc		(kA)
Pated current Ir		()
	50.11	(A)
Frequency	50 Hz	60 Hz
Operating mechanism position	A1	B1 C1
Color for push buttons and indicator	S	
Push buttons open/close:		_
IEC Red/Black IEC Red/Gr	een ANSI Red/Green	ANSI Red/Black
Indicator open/close:		
IEC Black/White	1	ANSI Red/Green
Uperating mechanism charged/discha	Irged:	anned/Dischanged
IEC White/ fellow	ANSI Chi	arged/Discharged
Control unit and sensors		
		CSa4 200A
VIP 400 (not available for all electrical characteristics)		CSb4 630A
VIP410A		
VIP410E		CSb4 630A
Circuit breaker options		
2nd opening release (see possible	e choices in combination table bel	ow)
Shunt opening release YO2		
24 Vdc 60 Vd	dc 220 Vdc	220 Vac (50 Hz)
30 Vdc 110 Vd	dc 48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc 125 Vd	dc 110 Vac (50 Hz)	240 Vac (60 Hz)
Undervoltage release YM		_
24 Vdc 60 Vd		220 Vac (50 Hz)
30 Vdc 110 Vd	dc 48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc 125 Vd	ac 110 vac (50 Hz)	240 Vac (60 Hz)
Remote control		
Electrical motor M	2432 Vdc	110127 Vdc/ac
	4860 Vdc/ac	220250 Vdc/ac
Shunt closing release YF		
		220 Vac (50 Hz)
	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vac 125 Va	ac 110 Vac (50 Hz)	240 Vac (60 HZ)
Low voltage wiring connection	Male plug (1.2 m)	emale socket (2 m)
Locking C.B. in open position	Flat	Tubular
Support frame	Low (560 mm)	High (775 mm)
Pocket battery		
Leaflets language	French	English
Pressure switch		

schneider-electric.com

EvoPact SF SF₆ Circuit breaker EvoPact SF2 fixed Order form

Only one of the boxes (ticked X or filled by the needed value) have to be considered between each horizontal line. Green box X corresponds to none priced functions.

fixed Order Form

Basic fixed circ	uit breaker	Quantity
Rated voltage Ur		(kV)
Impulse voltage Up		(kVbil)
Short-circuit current	lsc	(kA)
Rated current Ir		(A)
Frequency		50 Hz 60 Hz
Color for push button	is and indicators	
Push buttons open/clo	ise:	_
IEC Red/Black	IEC Red/Green	ANSI Red/Green
Indicator open/close:	_	
IEC Black/White		ANSI Red/Green
Operating mechanism	charged/discharged:	
IEC White/Yellow	IEC Black/White	ANSI Charged/Discharged
Circuit breaker	options	
1st opening release ((see possible choices in c	combination table below)
	ning release VO1	
Shunt ope	shing release to t	
Shunt ope 24 Vo	dc 60 Vdc	220 Vdc 250 Vac (50 Hz)
Shunt ope 24 Vo 32 Vo	dc 60 Vdc dc 100-109 Vdc	220 Vdc 250 Vac (50 Hz) 110 Vac (50 Hz) 120 Vac (60 Hz)

40 VUC	100-127 VUC	220 Vac (30112)	240 Vac (00 112)
Undervoltag	e release YM		
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
32 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Mitop		Without contact	With contact
2nd opening release (s	ee possible choice	es in combination tabl	e below)
Shunt openii	ng release YO2		
24 Vdc	60 Vdc	220 Vdc	250 Vac (50 Hz)
32 Vdc	100-109 Vdc	110 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	100-127 Vdc	220 Vac (50 Hz)	240 Vac (60 Hz)
Undervoltag	e release YM		
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
32 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Mitop		Without contact	With contact
Remote control			<u> </u>
Electrical mo	otor M	2432 Vdc	110127 Vdc/ac
		4860 Vdc/ac	220250 Vdc/ac
Shunt closin	g release YF		
24 Vdc	60 Vdc	220 Vdc	220 Vac (50 Hz)
32 Vdc	110 Vdc	48 Vac (50 Hz)	120 Vac (60 Hz)
48 Vdc	125 Vdc	110 Vac (50 Hz)	240 Vac (60 Hz)
Low voltage wiring con	nection	Male plug (1.2 m)	Female socket (2 m)
Locking C.B. in open po	sition	Flat	Tubular
Pressure switch			
Support frame			
Leaflets language		French	English
Pressure switch			

Releases combinations table

Mitop

Neleases compinations table						
Shunt opening releases YO1/YO2	1			2	1	1
Undervoltage release YM		1			1	
Mitop			1			1

EvoPact SF SF₆ Circuit breaker up to 40.5 kV

Order form

Only one of the boxes (ticked X or filled by the needed value) have to be considered between each horizontal line. Green box X corresponds to none priced functions.

EvoPact SF F400 withdrawable

Order Form

50 Hz ANS ANS ANS ANS action table be 220 Vdc ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ination table b	(kV) (kVbil) (kA) (A) (A) (A) (A) (A) (A) (A) (A) (A) (
50 Hz ANS	(kVbil) (kA) (A) (A) (A) (A) (A) (A) (A) (A) (A) (
50 Hz	(kA) (A) (A) (A) (A) (A) (A) (Charged/Green ANSI Red/Green ANSI Red/Green SI Charged/Discharged IOW) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 240 Vac (60 Hz)
50 Hz	(M) (A) (A) 60 Hz 60 Hz ANSI Red/Green ANSI Red/Green SI Charged/Discharged Iow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (50 Hz) 120 Vac (60 Hz) 220 Vac (50 Hz) 120 Vac (60 Hz)
50 Hz	(A) 60 Hz 60 Hz ANSI Red/Green ANSI Red/Green SI Charged/Discharged Iow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 240 Vac (60 Hz)
50 Hz	ANSI Red/Green ANSI Red/Green ANSI Red/Green SI Charged/Discharged Iow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 240 Vac (60 Hz)
ANS nation table be 220 Vdc ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	ANSI Red/Green ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ANS	ANSI Red/Green ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ANS nation table be 220 Vdc ac (50 Hz) ac (50 Hz) ination table be 220 Vdc ac (50 Hz) ac (50 Hz)	ANSI Red/Green ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ANS nation table be 220 Vdc ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	ANSI Red/Green ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 240 Vac (60 Hz)
ANS	ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ANS	ANSI Red/Green SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ANS nation table be 220 Vdc ac (50 Hz) ac (50 Hz) ination table be 220 Vdc ac (50 Hz) ac (50 Hz)	SI Charged/Discharged low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) ac (50 Hz) ac (50 Hz)	low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) 220 Vdc ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	low) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
220 Vdc ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
220 Vdc ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	120 Vac (60 Hz) 240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) ination table b 220 Vdc ac (50 Hz) ac (50 Hz)	240 Vac (60 Hz) elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
220 Vdc 220 Vdc ac (50 Hz) ac (50 Hz)	elow) 220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
220 Vdc ac (50 Hz) ac (50 Hz)	220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
220 Vdc ac (50 Hz) ac (50 Hz)	220 Vac (50 Hz) 120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz) ac (50 Hz)	120 Vac (60 Hz) 240 Vac (60 Hz)
ac (50 Hz)	240 Vac (60 Hz)
	-
220 Vdc	220 Vac (50 Hz)
ac (50 Hz)	120 Vac (60 Hz)
ac (50 Hz)	240 Vac (60 Hz)
] With contact
	_
432 Vdc	110127 Vdc/ac
60 Vdc/ac	220250 Vdc/ac
	1
220 Vdc	220 Vac (50 Hz)
ac (50 Hz)	120 Vac (60 Hz)
ac (50 HZ)	240 Vac (60 Hz)
French	English
IVI1	M2
1250 ^	≤ 40 KA 2500 A
1230 A	2500 A
	4 NO, 4 NC
	Quantity
	ac (50 Hz) ut contact 432 Vdc 60 Vdc/ac 220 Vdc ac (50 Hz) ac (50 Hz) French M1 1250 A 22 1 1

How can digital bring more value at work?

Simplify your life at all steps of your business

Connect mySchneider

Register to mySchneider help you find what you need to create better and more efficient Low Voltage or Medium Voltage Switchboards, easily and in less time.

panel builders web page

You'll get:

- Productivity tools
- Personalized resources
- Collaborative sales support
- Trainings

Get support anytime

- 24/7 self-service, mobile catalog and access to expert help
- Off-line and on-line catalog
- Manage and track your orders
- Advanced support

MySchneider App

Discover, select and define

Experience our advanced WEB functionalities that help to:

- Select and compare components •
- Build easily and automatically your technical documentation with ready to use tools

P www.se.com

Order and check ordering information

A self-service ordering platform to access detailed information:

- Check real-time price and availability information
- Order online
- Check order status and tracking information
- Get financial documentation

Part No

With Schneider Flectric Partner Program,

get more done!

Think big. Partner up!

Visit our page and get more:

panel builders web page
DIGITAL TOOLS

se.com

This international web site allows you to access all the Schneider Electric solutions and product information via:

- Comprehensive descriptions
- Range datasheets
- A download area
- Product selectors

You can also access information dedicated to your business and contact your Schneider Electric country support.

Green Premium[™] ecolabel product -Sustainable performance, by design

Schneider Electric Industries SAS 35, rue Joseph Monier - CS 30323 F92506 Rueil-Malmaison Cedex

© 2022 Schneider Electric. All Rights Reserved. Life Is On Schneider Electric is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies. As the standards, specifications and designs develop from time to time, please contact Schneider Electric for confirmation of the information given in this document. AMTED304010EN - 17062022